
AD-A12O 205 MARYLAND UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE P/B 9/2
DETECTION OF INHERENT DEADLOCKS IN DISTRIBUTED PROGRAMS. (U)
JUN 82 K HAD. R T YEN F49620-80-C-0001

UNCLASSIFIED AFOS-T-Ap.nAA

J 82

UNCLASSIFIED

SECU RITY CL IN.SSIF Q.,ATION O F THIS P AGE (When DataEnIe
,

d) R E ADIN.__ ____

REPORT DOCUMENTATION PAGE BEFORE COMe- 'NG FOR'

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATAL JMBER

AFOSR-TR. 82-0864 jd'S'
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

DETECTION OF INHZENT DEADLOCKS IN DISTRIBUTED TECHNICAL
PROGRAMS 6. PERFORMING OIG. REPORT NUMBER

7. AUTHOR(s) l. CONTRACT OR GRANT NJMSBER(.)

Kegang Hao and Raymond T. Yeh F49620-80-C-O001

9. PERFORMING ORGANIZATION NAME AND ADDRESS 1D. PROGRAM ELEMENT. PROJECT. TASK

Department of Computer Science AREA & WORK UNIT NUMBERS

University of Maryland PE61iO2F; 2304/A2
College Park MD 20742

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Directorate of Mathematical & Information Sciences June 1982

Air Force Office of Scientific Research 13. NUMBER OF PAGES
0 Bolling AFB DC 20332 6

, 14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED
15s. DECL ASSI FICATION DOWNGR~ADING

SCHEDULE

(16. DISTRIBUTION STATEMENT (of tiN Report)

S Approved for public release; distribution unlimited.

Oct 17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If dilfferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and Identify by block number)

OCT
131982

C

E
20. ABSTRACT (Continue an reverse side If necessary and identify by block number)

In this paper, the concept of 'inherent deadlock' in distributed programs is

defined. Several algorithms for detecting inherent deadlocks are given.

' -Deadlock prevention is crucial in distributed programs. In order to ensure the

correctness of a distributed program, we must avoid the occurrence of the dead-
lock in its execution. Unfortunately, the deadlock problem in distributed

' program is undecidable, as the halting problem in the sequential problem .
However, partial solutions to the deadlock problem exist. In this (CONTINUED)

D D I J A N,7 3 1 4 7 3 E D I T I O N O F I N O V 6 5 IS O S S O L"E U N C L A S S I F IEoEUR " *E I A O FT S I' d

UNCLASSIFIED P,,t(_..a_ D
SECURITY CLASSIPICATIOWOPq_041IWAS (* oeK~td

ITEM #20, CONTINUED: the authors shall investigate the detection of inherent
deadlocks in distributed programs.

There are many models for distributed programs. In this paper, the authors
shall use the model of Communicating Sequential Processes (CSP) developed by
Hoare&+[i-2j-- . In section 2 they develop some simplifications and abstrac-
tions of CSP and define the concept of 'inherent deadlock'. They they solve
its decision problem.

In section 3 they authors define the concept of D-execution, and obtain a
sufficient condition and a corresponding algorithm for detecting inherent
deadlock.

In sections 4 and 5 the authors introduce the concept 'matching number' as the
foundation for obtaining two sufficient conditions for detecting inherent
deadlock. Then they reduce these conditions to the solvability of some kind
of indeterminate equation and give its decision algorithm.

SECURITY CLASSIVICATIOR OF ' P, I'GE(Wh.n Date Ew.

....... - -----I- - - -..[i,- -.

/ 7-7.

AFOSR-TR- 82 0864 1

DETECTION OF INHERENT DEADLOCKS IN
DISTRIBUTED PROGRAUS

by Kegang Hao* and Raymond I. Yeh

Department of Computer Scienoe
University of Maryland

College Park, Maryland 20742 A -
Abstract receive command : A?x

In this paper, the concept of "inherent dead- DEFINITION 2.2. The Statements of CSP are defined
lock" in distributed programs is defined. Several as follows:
algorithms for detecting inherent deadlocks are
given. 1. SK statement SK command

2. AS statement : AS command
1. Introduction 3. 10 statement : 10 command

4. sequence statement : Sl ;...; Sn , where
Deadlock prevention is crucial in distributed S,... ,Sn are statements

programs. In order to ensure the correctness of a 5. parallel statement : [Al:: Sl '
distributed program, we must avoid the occurrence An:: Sn] where Si, ...Sn are statements
of the deadlock in its execution. Unfortunately, called processes, and Ai is the label of
the deadlock problem in distributed program is un- Si, i-l,...,n
decidable, as the halting problem in the sequential 6. alteration (AL) statement:
problem. However, partial solutions to the dead- [bl,cl - S1 0 ... 0 bn, cn - Sn]
lock problem exist. In this paper, we shall inves-
tigate the detection of inherent deadlocks in dis- where bi is a boolean expression and ci
tributed programs. is either an SK command or an 10 command.bi,ci is called a guard

There are many models for distributed pro- 7. repetition (RE) statement:
grams. In this paper, we shall use the model of
Communicating Sequential Processes (CSP) developed *(bl,cl - Sl 0 ... 0 bn,cn - Sn]
by Hoare [1, 2, 3]. In section 2 we develop some
simplifications and abstractions of CSP and define DEFINITION 2.3. A Program is a statement.
the concept of "inherent deadlock". Then we solve

its decision problem. EXAMPLE 1, program P:

In section 3 we define the concept of D- [Al :: *[bl, A2!el - S1] ; AZ?xl ;23!el'
execution, and obtain a sufficient condition and a A 2 :: *[b2, Alx2 - S2] A3?x2' ; Al!e2
corresponding algorithm for detecting inherent 8 A3 :: Al?x3 ; A2!e3]
deadlock.

In order to describe the executicon states of
In section 4 and 5 we introduce the concept a program, we introduce a special symbol @ in-

"matching number" as the foundation for obtaining serted in the program. @S means that the state-
two sufficient conditions for detecting inherent ment S is ready for execution, and S@ means
deadlock. Then we reduce these conditions to the that the execution of S has terminated.
solvability of some kind of indeterminate equation
and give its decision algorithm. DEFINITION 2.4 A configuration is a program to

which a number of spocial symbol 0 have been
2. The Inherent Deadlock and inserted.

Its Decision Algorithm
DEFINITION 2.5. The following formulas are called

Some simplifications and abstractions of CSP simple formulas: '
will be given first in this section. 1

1. @5 => S@, where S is an AS or SK

DEFINITION 2.1. The Commands of CSP are given as statement.
follows: 2. @[Al:: Sl 8 ... 8 An:: Sn]

-> [Al::@Sl 8... , An:: @Sn]
1. skip command (SK) : skip 3. CAI:: Sl@,, ... ' An:: Sn@]
2. assignment command (AS) : x:-e, where x JAI[:: 51 8 ... 8 An:: Sn@

is a variable and a is an expression.
3. input/output command (10) : *On leave from Dept. of Computer Science, China

send command : A!e Northwestern University, Xian, Shaanxi, China.

Apprved for PuOpb

dlStr lo ud 8

2

4. Si..? ;2 -> 51. ; s2 ',8 A2 :: C[b2, A4?x2 -S S2] ;A.3?x2' ;Al!e2
S. .(... 0 biskip -> Si 0 ...] , A3 :: AJx3 ; A2!e3

- .[... 0 bi,skip - ?Si 0 ...
6. [... 0 bi,ci -> SO3 0 ...] u2

-> [..0 bi,ci ->Si 0 ...]* (... 0 bi,skip Si 0 ... Al :: * b, A!el-> Si ; AZ?xl A3!el'
. *.. 0 b,skip - Si 0...], A2 :: b,Alx2- S2 ;A3?xZ Al!e12

. [... 0 bi.ci -- Si 0 ...) A3 :: Alx3 ; A2!e3]

... 0 bici - Si 0 ... J@ u3 :
9. *[0 bi,ci -> Si@ C (A! :: *[bl, A2!el- 3Sl];A2 ?xl A3!el'

- ... 0 bi,ci - Si 0 . I ?x2' ;Al!e2
, , AZ :: .x A !e3 2S] .

OEFINIT!ON 2.6 The following tormulas are called 8 K3 : AIx3 A2!e3
cotuncatton formulas relative to the correspond- u4
ing .J corwands:

[A1 :: *rbi, A2 e1 ->Sl] ; A2~xl ;A3!el'
1. 4S 4 S , where S is an 0 statement r A1 *Cbl, AJ2x2 51 A2?x2' A!!el

,,; A2 ::*Cb2, Al?x2 -S2];A.3?x2' ;AI'e2
2. *[... 0 bi,ci - Si 0 ... A3 @Alx3 ; A2!e3

- ... 0 bi,ci -> 'S1 0 ... : l3"
where ci is an I0 command U:

3. @*(... 0 bici -> Si 0 ... I
-> C[... 0 bi,ci - ,Si 0 ... Al :: *[bl, A2!el -> Si] ; A2?xl ; A3!el'

where ci is an I0 command,' A2 :: *[b2, A ?x2 -> S2] 1 A3?x2' ;Al!eZ

Definition 2.7. Two commands are called matching , A3 :: @A1?x3 ; A2!e3]
commands, if the following conditions are satis-
fied: u6

1. One of them is a send command, and the [Al :: *[bl, A2!el - S1] ; 3A2?xl ; A3!el t

other Is a receive cmmad,,' A2 *[b2, AI?x2 - 52] ;(A3?x2' ;Al!e2
2. Each command of them is within the process 8 A3 :: 3Al?x3 ; A2!e3

addressed by the ocher command respective-
ly, By the definition the following sequences are

3. The variable x and the expression e executions:
are of the same type.

For instance, in example 1 A2!el in Al ul 3- u2] u5] u6
and Al?x2 in A2 are matching commands, A3!el' ul] u2] u3]- u4] u2]- u5] u6
in Al and Alx3 in A3 are matching commands, ul] u2]- u3] u4]' .
and so on.] u3] u- 4]- u2 3- u5] u6

DEFINITION 2.8. A configuration v is said to be DEFINITION 2.11 A statement S in progra ? is
deduced frcm u. denoted by u I- v , if either of called an inherent deadlock statement, if S@ does
the following conditions is satisfied: not occur in any execution of P

1. v is the result of replacing all occur-
rences of A in u by B , where A -> B DEFINITION 2.12. A program P is called an in-
is a cimple formula, herent deadlock program if it is an inherend dead-

2. There are two matching ID coands in u , lock statement.
and v is obtained from u by simulta- Intuitively, inherent deadlock is a property
neous application of the conmunication of a programthat deadlock always occurs in its
formula* relative to these two commands. euicuton. In CSP, deadlock means nontermination,

i,e., either infinite loop execution, or some pro-
DEFINITION 2.9 A configuration u is said to be cese is forever blocked at an 10 statement.
a last confituration, if there does not exist a We shall give a necessary and sufficient con-
configuration v such that u I- v dition for inherent deadlock and a corresponding

decision algorithm.
DEFINITION 2.10 A sequence of configurations
ul....,un is said to be an execution of a program DEFINITION 2.13. Let P be a program. The canon-
P , If the following conditions are satisfied: 'cal sequenAe of P is a sequence Cl,...Cn ot sets

of configurations constructed as follows:
1. ul -P 1. Cl - 3p
2. ui J- u±+l , I - I,.. .,n-1 2. If cK -/- 0 , then3. un is a last configuration. Ck+l - fu there exists uk in Ck suchthat uk]. u end u is not in Cl,... ,Ck}

Let us consider the configurations of the
program in example I: THEOREM 2.1. The canonical sequence is a finite

sequence, that is, there exists a number n such

that Cn - 0 .

8(Al :: C(bl, A2!el -> Sl] ; A2?xl ;A3!el' PROOF Since for every i , j Ci n Cj -6 , and the

3

number of configurations of P is finite, there- 7, @ -> -> ->

fore, the canonical sequence must be a finite 8, [...0 bi,cl -> S12 0 ...
sequence. [> [0 bi,ci -> Si 0 ...],

9, *[bl,cl - Sl 0 0 bn,cn -> Sn]

The following theorem gives a necessary and => *[bl,2cl -> Sl 0 ... 0 bncn -1 Sn J@
sufficient condition for the occurrence of inher-
ent deadlock. The proof is straightforward by DEFINITION 3.3. Suppose q and r are two I0 com-
induction and hence is omitted. mands in a program P. q Is said to 2recede r if

either of the following conditions is satisfied:
THEORLE 2.2 5 is an inherent deadlock statement
if and only if S@ does not occur in any config- 1. There is a sequence statement 51; ...;Sn
uration of the canonical sequence Cl....,Cn. (n>l) in P and q is in Si, r is in Sn

2. There is an AL (or RE) statement [... 0
From Theorem 2.1 and Theorem 2.2 we obtain bi,ci -> Si 0...] (or *[...0 bi,ci ->

the following decision algorithm for determining Si 0...]) in P and q is ci, r is in Si
whether a statement is an inherent deadlock state- for some i
ment.

DEFINITION 3.4 Suppose *q and r are 10 com-
ALGORIT&M I mands in a D-configuration. Command r is said

to be a prime matching comand of q if
1) Construct the canonical sequence of P .
2) Check all configurations in it. 1. r and q are matching commands, and
3) If S@ occurs in some configuration, 2. r is not underlined, and

then we know that S is not an inherent 3. either r is not prezeded by any 10
deadlock statement. comand which matches o and is not

4) Otherwise, S is an inherent deadlock underlined, or q is i: an RE statement
statement, which does not contain r

For example, the canonical sequence of the DEFINITION 3.5 A D-configuration v is said to
program in example 1 is constructed as follows: be deduced from another D-configuration u ,

denoted by u I- v , if v is obtained from u
Cl-{ull C2- {u2), C3-'{u3,u5}, C4={u4,u6} C5-{ }. by the application of following two steps:

It is clear that P@ does not occur in any con- 1. (REPLACING) For every D-formula A -> B
figuration of the canonical sequence, so P is where A occurs in u, replace all occur-
an inherent deadlock program. rences of A in u by 5.

2. (UNDERLINING) If -Q occurs in u, where
In the decision algorithm it is necessary :o q is an 0 comand, underline all -,rime

check all possible configurations in its canonical matching commands of q.
sequence. However, some programs have so many
suLh configurations that to check them exhaustive- Obviously, we have the following theorem:
ly is very difficult, if it is not impossible.
Therefore, developing some algorithms for detect- THEOREM 3.1 If u == v and u '-- w , then
ing inherent deadlock which requires less time v = w
and space will be our goal in the rest of the
paper. DEFINITION 3.6 A 0-configuration u is said to

be a last D-configuration if there is no D-
3. D-execution of Program configuration v such that u !- v .

In this section, another sufficient condition DEFINITION 3.7 A sequence of D-configurations
for inherent deadlock and a more efficient al- ul,...,un is said to be a D-execution of a
gorithm for detecting the inherent deadlock than program P , if the following conditions are
aelorithm 1 are develooed. We shall introduce satisfied:
the notion of d terministic execution (D-executior
so that every p-ogra has only one such execution. 1. ul -

2. ui -- ui+l i-l...,n-1
DEFINITION 3.1 A D-configuration is a program in 3. un is a last D-configuration.
which a number of special symbol @ have been in-
serted and some 10 comands have been underlined. By theorem 3.1 and above definitions it is

clear that the D-execution is unique for any given
DEFINITION 3.2 The following formulas are called program.
D-formulas:

EXAMPLE 2 Program P:
1,2.3,4, are the ame as the simple formulas

1.2.3,4 . [Al:: [bl. A2!el - A2?xl ; A3!sl
5, 4 r - c , where r is an 10 command, 0 bl t , A2el' - A2?xl' ; A3!el']
6. Sblcl - 5l 0 ... 0 bn,cn -> Sn]

"" bl,8cl -> Sl 0 ... 0 bn,cn->Sn]]

~ t

4

,,.A2:: [b2, Alx2 - A3?x2' ; Aile2 where P' is t',e same as P or is obtained from
0 bW', AI?x2' -" A3x2 ; AI!e2'] p by inserting some . and/cr underlining some 10

,A3:: Al!x3 ; A2!e3 commands, then P is an inherent deadlock prcgram

ul WR now give a detaction algorithm derived from
tFe above results.

u2
'Al:: @ fbl, A2!el - A2?xl ; A3lel ALGORITW01 IT.

0 bl', AZ!el' - A2?xl' ; A3!el']
:A2:: [b2, AI?2 - A3?x2' ; AI!e2 i. Construct the D-execution of program P

0 b2, Al?x2' - A3x2 ; Al!e2']
;:A3:: @ Al?x3 ; A2!e3] 2. Check the D-execution. If no S'! occurs

in the D-execution, then S is an inherent dead-
u3 :lock statement and especially, if no P'? occurs

[AI:: rbl, 1 A2!el - A2?xl A3el in 'he D-execution, then P is an inherand dead-
0 bl', A2!el A2.?xl' A3:e'] lock program.

:A2.:: [b., U AI'x2 - A3?x2' ; Al!e2 it is clear that algorithm 11 is far =ore ef-
0 b2', P Alx2' - A3x2 : Al!e2'] ficient than algorithm I. In order to illustrate

,A3:: @ Al?x3 ; A2!e3] this fact, we make a rough estimate as follows. Sup-
pose that in a program there are n nondeterministic

u4 [;steps and each step has k (-2) possible choices.
[A,:: [bl, A2.el - 9 A2?x1 ; A3el In algorithm II only n D-configurations need to be

0 bl', A2!el' @ A2?xl' ; A3!el'l constructed for these steps. while in algorithm I
::A2:: (b2, AIx2 - @ A3?x2' Ale--- what need to be constructed are ktn configurations.

0 2', Al?x2' -@ A3x2 Al!e2'] So the complexity of algorithm I is an exponential
:A3:: @ AL?x3 ; A2!e31 function of n, whereas the complexity of algorithm

It is a linear function of n.
From definition we know that

4. Matching Number Set
ul I-. u.2 -u3 I-u

Algorithm I is based on the analysis about
Is a D-execution. Since F@ does not occur in it, reachibility of 10 commands in the execution, but
the program P is an inherent deadlock program, as in some programs the occurrence of the deadlock is
shown below, not like this. For example, the inherent deadlock

k! the following program cannot be discovered by
WOKI 3.1. Suppose sequence ui,.. .un is an execu- algorithm II. In this program process Al wants
tion of the program P and S is a statement in to send an odd number of values to A2, but A2 can
P only receive an even number of them.

(1) -f !S occurs in some ui, then @S also EXAMFP 3.
occurs in .-execution of P

(' Yf S@ occurs in some ui , then there EAl:: A2'el ; -(bl, A2!el' - A2!el" : Sl]
is S'1 which occurs in the D-execution of P , :A2:: *Cb2. Alx2 Alx2 S2
where 5' - the same as S or is obtained from 0 b2. Al?x2 - %l?x2' Al?x2; Al?2"'
S by Irserting some I and/or underlining some S2']I
I commands.

In order to develop an algorithm for detect-
Lan& 3.1 can be proved in a straightforward ing this kind of deadlock, let us introduc, some

fashion using induction. Rence, the proof is omit- defintiions.
ed here.

DEFINITION 4.1. If in the definition of execution
IHOW 3.2. we don't restrict that the application of communi-

cation formulas is only for matching 10 commands,
tif S is a statement in a program P , and no in other words, we replace definition 2.8 (2) by

S'! occurs in the D-execution, where S' either is (2') as follows:
identical to S , or is obtained from S by in-
serting some @ and/or underlining some 10 com- (2') For one or two 10 commands in u, v is
aendo, then S is am inherent deadlock statement. obtained from u by application of relative com-

munication formulas, then we obtain a new defini-
PROOF. If S is not inherent deadlock statement, tiov about the execution, we call it V-excution.
then S@ occurs in an execution of P . By Lemas Obviously, every execution is a V-execution.
3.1 '1 occurs i. ')-execution of P , contradict-
ing the msumption ..f the theorem. DF.INITION 4.2. Let S be a statement in a

process and q be an 10 command in another process,
-a fnllowing theorem follows directly and a. rl,...,ru be 10 comands in S which matches

hence its proof is omitted. q . For a particular V-execution E, the number of
applications of the relative communication formulas

THEORV 3.3. if no P 3 occurs in D-execution, tv :!. ri is called matching number of q in S

A ~- -. ~.-

5

with respect to E , denoted by n(S,q,E) . For PROOF. By theorem 4.2 every matching numbers set
all possible 7 the set of matchla. numbers of . ' is obtained from sets 1) and {0 by finite times
in S is called matching numbers set of q in S, :.f che application of addition, union and closure
denoted by N(S,q) . operation. Obviously, (1 and C01 can be expressed

in andard form. If we can show that the collec-
Suppose that P is a parallel statement, and tion of all sets which can be expressed in form

Q , R are processes i. it, and q (inQ) and r (4.1), denoted by I, is closed under these three
(in R) are matchLng commands. it is obvious that operations, then the theorem will be shown.
if P is not an inherent deadlock statement then
for some V-execution E, n(Q,r,E) - n(E,Q,I) . LLMMA 4.1. I is closed under the addition opera-
Thus, we obtain the following theorem: tion, the union operat'l. and the closure opera-

tion.

THEOREM 4.1.

PROOF. This lemma follcws directly from the fol-
If N(Q,r) n N(R,q) - , then S is an in- lowing formulas:

herent deadlock statement.
*A + *B - *A U" B)

We shall discuss how to compute N(S,q) and *((ai + *A) = ({a} ' A
how to decide whether or not N(Q,r) a N(R,q) = 0.

THEOREM 4.4.
DEFINITION 4.3. Let Al , A2 be sets of natural
numbers. The addition and closure operation are (+a} . *A) n (:b} + *B) -/- D
defined as follows:

if and only if

Al + A2 (a a - al + a2 . al in Al , a2 in A21

*A - (a a - al +... ak , ai in A, K >- 0) alxl 4...+ anxn -blyl -. L.- bmym - b-a, (xi,yi , 0)
(for k-O ,we say a - al +...+ ak - 0)

has a natural number solution, where A and B
THEORM 4.2. Let S be a statement in a process are the finite sets of natural numbers:
-and q be an 10 command in another process. Then
N(S,q) can be computed by induction on the struc- A - .al,...anl , B - (bl,...,bm} , mn - 0
ture of S as follows:

a and b are natural numbers, b >- a
1. if S is a SK or AS statement,

then V(Sq) - (01 PROOF. By the definition of closure operation,
2. if S is an 10 statement, then this theorem is obvious.

r £1} , if S and q are matched, THEOREM 4.5. From number theory/ we know that
Y(S,q) -l L (01 , otherw:.se alxl +...+ anxn - blyl -...- bmym - c

3. if S - (Al:: SI U ... An:: Sn] , then (4.2)
n (ai,bi > 0 .m, >- I , c > 0 , xi,yi >- 0)

N(Sq) - z N(Si,q) ,
i1 has a natural number solution, if and only if the

4. if S - Sl ... Sn , then greatest common divisor (al . an , bl,...bm) =
n k is a divisor of c.

N(Sq) - I N(Si,q)
i-l We now obtain another algorithm for detecting

5. if S - [... 0 bi,ci -" Si 0 ...] , then the inherent deadlock:
n

N(S,q) - U (N(ciq) + K(Si,q)), ALGORITHM III. Suppose S is a parallel statement
1-1 in a program P

6. if S - *(,.. 0 bi ci - Si 0 ...] , then
n 1. ?or every two matching 10 commands q in

N(S.q) (g (N(ci.q) + N(Siq))) Q and r in R, where Q and R are processes in S,
i-1 compute N(Q,r) and N(R,q).

2. Change them into the standard form:
THEOREM 4.3. Every matching numbers set N(S,q) f
can be expressed in the fo'lltng form called N(O,r) - U ((ai} + *Ai)
standard form: i-

m
n N(Rq) - U ((bil + *Bi)

l(S,q) - U ((al + *ai) (4.1) i1
i-i 3. For all i , j check

where ai is natural number, AL is finite set of ((ail + *At) n ((bj} + *Bj) 0 (4-.3)
natural numbers.

that is, decide whether relative indeterminate
equations have natural number solutions. If for

I

6

all I , j (4.3) holds, then The way to compute N(S,Q) is almost the same
as to compute N(S,q) . The only diffe-ence is

N(Qr) n N(R,q) - 0 (4.4) that (2) of theorem 4.2 is replaced by

4. if there are Q,R,q,r such that (4.4) holds, (2') If S is an :0 statement then
then S is of inherent deadlock. h11l if there is an 10 command in Q

N(SQ) which matches o
For instance, the matching numbers sets of (0 otherwise

the program in example 3 are:

Similarly, algorithm IV is also more effi-
N(A2, A2!el) - *{2 .4) cient than algorithm I. Now we compute the match-
N(Al, A2?x2) - (11 + *(2} ing numbers sets of the program in example 4 as

follows
Since (2. 4, 2) * 2 is not divisor of 1.

.N(Al,A2) - 11} + 21
xl + 4x2 - 2v! - 1 N(AI,A2) * * 2, . p

NX(A2,AI) - 24

is unsolvable. Thus the orogram in examvle 3 is From ({1} + *{2}) n (*'2,4) - 0 we know that
an inherent deadlock vrogiam. this program is an inherent deadlock program.

Algorithm III is also more efficient than As we mentioned before, the algorithms (I:)-
algorithm I. The number of the matching numbers (IV) can not be used to decide whether a program
sets is equal to the number of matching commands is an inherent deadlock program, as algorith= I
in the program, which has nothing to do with the does. However, their capability of detecting
number of nondeterministic steps. So the more deadlocks are still rather strong. Several dis-
nondeterministic steps are there i. a program, the tinct kinds of inherent deadlock errors can be
moce clear the efficiency of algorithm III is, detected by them respectively. Especially, they
ccmparing with algorithm I. are more efficient than algorithm I. So the

authors consider it desirable to develop some
5. Algorithm TV tools for the static analysis distributed programs

Let us exanine an example: using these algorithms.

ACKNWLEDGMNTS
EXA.(LE 4

The authors wish to thank Dr. B. Chen, Dr. J.
[AI:: A2!el ; *[bl, A2?xl - A2!el] Read, Mr. G. Luckenbaugh, Prof. P. Yuan and .Mr. B.
,A2:: *[b2, Alx2 - Alle2 Zhou for their comments and suggestions.

0 b2',Al!e2 - Al?x2 ; Al!a2 ; AI?x2']]
N(Al, Al?x2) n N(A2, A2!el) This work is partially supported by a con-

- ((0. + *(l) n (*(1,2}) -/- 0 tract from the U. S. Army under Contract DASG 60-
X(al, Al!e2) n N(AZ, A2?xl) 82-C-0006 and by the Air Force under Contract

- *(l) n *{l,.} -/- 0 F49620-80-CA01.

But this program is am inherent deadlock progran REFERENCES
as shown belw using Algorithm IV.

1. Hoare, C. A. R., Communicating Sequential
DEFINITION 5.1. Let S be a statement in a Processes. CACM 21. 666-677 (1918).
process R , Q be another process and E be a
V-executiom. Suppose that rl,...,rn are 10 com- 2. Levin, G. M. and Gries, D., A Proof Technique
mends in S such that for every ri there is an for Communicating Sequential Processes. Acta
t0 comand q in Q which matches ri . For a Informatica 15, 281-302 (1981).
V-execution E the number of applicatioas of the
relative commuication formulas to the ri is 3. Apt, K. R., Frencez, N. and De Roever, W. P.,
called matchina number of Q In S with respect to A Proof System for Communicating Sequential
E . For all possible E the set of matching Processes. AM Transactions on Programming
numbers of Q in S is called matching numbers Languages and Syetems, Vol. 2, No. 3, July
set of Q in S,denoted by N(S,Q) . 1980.

Similarly, we obtain the following theorem
sed algorithm IV:

THEORED 5.1.

Suppose that P is a parallel statement and
Q . Z are processes in It. If

I(Q,) n N(RQ) - 0

then P is an inherent deadlock statement.

L

